• Inquiry List(0)
English
繁體中文
简体中文
한국어
日本語
  • Login
  • Products
    Computer-On-Module
    • COM-HPC
    • COM Express
    • OSM
    • SMARC
    • Qseven
    • ETX
    GPU Solutions
    • MXM GPU Modules
    • PCIe Graphics Cards
    Rugged Computing
    • CompactPCI & CompactPCI Serial
    • VPX
    • PC104
    • AVA Railway Rugged Computers
    • PIDS
    Edge Computing Platforms
    • Industrial PCs, Motherboards, & SBCs
    • Embedded Computers & IoT Gateways
    • Edge AI Platforms
    • AI Smart Cameras
    • Robotic Controllers
    • Industrial Solid State Drives
    Industrial Display Systems & Panel PCs
    • Industrial Touch Monitors
    • Open Frame Panel PCs
    • All-in-One Panel PCs
    • Rugged Panel PCs
    • Digital Signage Players
    Automotive Computing
    • Autonomous Driving Solutions
    • AI-ADAS Solution
    Networking & Servers
    • AI GPU Servers
    • Industrial, Telecom Servers
    • Network Security Appliances
    • Private 5G Network Solution-MicroRAN
    Automation & Control
    • Machine Vision
    • Motion Control & I/O
    • EtherCAT Motion Control Solutions
    • HMI Panel PCs
    • Data Acquisition
    • GPIB & Digitizers
    • PXI Platforms & Modules
    • Autonomous Mobile Robots
    • Industrial Gateway Solutions
    Design & Manufacturing Services
    • DMS+ (ODM/OEM Services)
    Healthcare Computing & Monitors
    • Medical Panel PCs
    • Medical Monitors
    • Medical Box PCs
    Gaming Platforms & Monitors
    • Gaming-specific Solutions
    • Generic Solutions
    • Gaming Monitors
    • Advanced Gaming Architectures
    Software
    • EdgeGO Device Management Software
  • Industries
    Automotive Defense & Aviation Gaming Healthcare Industrial Automation Networking and Communications Retail & Logistics Semiconductor Solutions Smart Cities Test & Measurement Railway Robotics

    Automotive

    automotive computing

    With cutting-edge autonomous driving computing platforms that pave the way for safer and more productive travel, ADLINK's solutions provide you powerful computing capabilities to fulfill autonomous and advanced driver assistance system (ADAS) technologies as well as rugged design for automotive use.

    Learn More

    Defence & Aviation

    Defence & Aviation

    In the defense aviation arena, it is of paramount importance to accurately observe the environment and make fast and reliable decisions, leading to timely action. ADLINK rugged systems and Data Distribution Service (DDS) are a key part of a larger data-focused infrastructure that collects, stores, analyzes, and transfers information from the field to the decision-maker.

    Learn More

    Gaming

    gaming

    ADLINK Gaming provides global gaming machine manufacturers comprehensive solutions through our hardware, software, and display offerings. Uniquely combining computer expertise with a cutting-edge software stack and a deep understanding of the gaming industry’s requirements and regulations, we back up our customers so they can focus on creating the world’s best games.

    Learn More

    Healthcare

    Healthcare

    ADLINK is addressing the needs of healthcare digitization with a focus on medical visualization devices and medically-certificated solutions. By leveraging PENTA's design and manufacturing capabilities in the medical field, ADLINK's healthcare solutions facilitate digital applications in diverse healthcare environments.

    Learn More

    Industrial Automation

    Industrial Automation

    Industrial automation is a crucial facet of global manufacturing industries. ADLINK's flexible selection of system-, platform-, and product-based solutions overcomes the extreme environmental rigors of manufacturing deployments and delivers connected, fault-free performance on the factory floor.

    Learn More

    Networking and Communications

    Overview
    5G & MEC Cyber Security

    Retail & Logistics

    Retail Logistics

    Maintaining superior customer service and on-time delivery while simultaneously reducing retail shrinkage and increasing employee productivity can be very difficult to achieve when shipping high volumes of packages each day. ADLINK's solutions make customers' packages and pallets intelligent, efficiently connecting their entire supply chain and improving warehouse logistics.

    Learn More

    Semiconductor Solution

    Semiconductor Solution

    Everything is essentially driven by chips, and to suit the needs of diverse applications, a perfect wafer manufacturing process is necessary to ensure everything from quality to efficiency and productivity.

    Learn More

    Smart City

    Smart City

    A smart city is an urban area that implements Internet of Things sensors to collect data from a variety of sources and uses the insights gained from that data to manage assets, resources, and services efficiently. ADLINK's data-to-decision solutions incorporate video analytics, reliable design, deliver stability and reliability, and are an ideal choice to realize an efficient smart city.

    Learn More

    Test & Measurement

    Test & Measurement

    Test and measurement focuses on dedicated equipment for analysis, validation, and verification of electronic device measurement and end products. ADLINK continues to expand its T&M offerings with innovative products, meeting the unique needs of high-speed and high-bandwidth applications.

    Learn More

    Railway

    railway solution

    Our Rugged by Design CompactPCI/CompactPCI Serial, computer-on-modules, industrial-grade system and panel computer product portfolio has been specifically selected for onboard ATO/DMI and wayside CTC/RBC/TSRS railway solutions. ADLINK’s exceptional flexibility in design and manufacturing has been utilized by top rail signaling providers worldwide.

    Learn More

    Robotics

    Robotics

    Autonomous Mobile Robots (AMRs) are able to carry out their jobs with zero to minimal oversight by human operators. Facilities such as schools, hospitals, shopping malls, and factories in particular can use a swarm of AMRs to improve operational efficiency and quality of life.

    Learn More

    Featured Solutions

    5G MEC

    Autonomous Vehicle

    GPU Solutions

    ROS 2 Solution

    Smart Manufacturing

  • Strategic Partners
    AMD Ampere Arm Intel MediaTek NVIDIA NXP Qualcomm

    AMD-based Solutions

    AMD-based Solutions by ADLINK

    Empower your edge computing with ADLINK, a leading company enabling edge solutions. Leverage AMD's high performance, secure integration, and power efficiency advantages for a wide range of edge, networking, and edge systems with x86 core architecture. Experience superior processing and graphics performance with ADLINK's utilization of AMD Ryzen™ Embedded series, powered by Radeon™ RX, perfect for industrial, medical, automation and gaming applications.

    Learn More

    Ampere-based Solutions

    Ampere-based Solutions by ADLINK

    Experience the future of edge computing with our comprehensive offering, which includes the Ampere Altra-based COM-HPC module, a developer platform and/or dev kit. Dive in now to unleash superior performance, energy efficiency, and optimized TCO in applications including but not limited to industrial automation, autonomous vehicles, transportation, healthcare, video surveillance, and energy management.

    Learn More

    Arm-based Solutions

    Arm-based Solutions by ADLINK

    Based on Arm architecture, ADLINK also collaborates with Ampere, NXP, MediaTek, Qualcomm, and Rockchip in module computing development and value-added solutions across varied industries, including smart manufacturing, autonomous driving, robotics, AMR, drone, transportation, logistics, retail, infotainment, healthcare, security, and more.

    With plug-and-play tools, development kits, and all-encompassing systems, ADLINK and Arm empower developers to accelerate and realize their innovations.

    Learn More

    Intel-based Solutions

    Intel-based Solutions by ADLINK

    ADLINK is a Titanium member in Intel® Partner Alliance. From modular computing to system-ready use cases, ADLINK works closely with Intel to provide scalable, interoperable solutions that accelerate your intelligent device deployment with end-to-end analytics.

    Utilizing Intel-based modules, ADLINK accelerates your products’ time to market with edge AI platform development support while addressing diverse industry pain points, such as in networking, smart manufacturing, autonomous driving, AMR, transportation, healthcare, retail, and infotainment.

    Learn More

    MediaTek-based Solutions

    MediaTek-based Solutions by ADLINK

    ADLINK Technology and MediaTek are strategic partners that deliver innovative and powerful solutions for edge computing and edge AI applications. Leveraging MediaTek's flagship, power-efficient Genio platform SoCs and ADLINK's expertise in embedded and rugged designs, they provide high-performance, energy-efficient, and reliable modules and platforms in accomplishing various IoT use cases, such as smart home, human-machine interface, multimedia, industrial IoT, and robotics.

    Learn More

    NVIDIA-based Solutions

    NVIDIA-based Solutions by ADLINK

    To fulfill industry-specific requirements, ADLINK is able to efficiently develop edge AI platforms, AI smart cameras, medical platforms, and AI portable GPU accelerators based on NVIDIA Jetson modules, the NVIDIA IGX platform, and RTX Embedded GPUs for applicable industries, including smart manufacturing, autonomous driving, autonomous mobile robots (AMR), robotics, transportation, healthcare, logistics, retail, infotainment, AI development, professional graphics, and gaming.

    Learn More

    NXP-based Solutions

    NXP-based Solutions by ADLINK

    Utilizing NXP's i.MX 8 and i.MX 9 series technology, ADLINK offers edge-connected solutions to assist medical, test & measurement, automation, and smart city customers reduce TCO. This combination of NXP's technology with ADLINK's R&D experience in edge computing provides versatile and dynamic solutions for critical applications.

    Learn More

    Qualcomm-based Solutions

    Qualcomm-based Solutions by ADLINK

    Qualcomm Technologies’ portfolio of leading robotics and drones solutions is driving next-generation use cases, including autonomous deliveries, mission critical use cases, commercial and enterprise drone applications and more.

    Among them, the Qualcomm QRB5165 solution is designed to help build consumer, enterprise or industrial robots with 5G connectivity, on-device AI and machine learning, superior computing, and intelligent sensing capabilities. By adopting Qualcomm QRB5165, ADLINK’s module will enable the proliferation of 5G in robotics and intelligent systems.

    Learn More
  • Support

    Support

    Partner CentereRMA ServicesADLINK DDS Support

    Downloads

    Software & DriversADLINK DDS DownloadsPublicationsContent HubADLINK GitHub

    Contact

    Ask an ExpertWhere to Buy

    No matter you need to get product pricing and availability or need assistance with technical support, we are here for you.

    Learn More
  • About

    Values

    Quality Policy and ResourcesAlliances and ConsortiaADLINK SustainabilityEnviromental Protection & ResponsibilitiesCapabilitesProduct Security

    Company

    About ADLINKWorldwide OfficesInvestor RelationsLogo and Brand GuidelinesCareers

    Newsroom

    News & EventsPodcastBlogsEdgeOpen™ Voices
    Support

    Check out the latest news and explore ADLINK featured blogs.

    Learn More
  • Home
  • Industries
  • Defense and Aviation
  • Defense and Aviation Solutions
  • UGV Requirements Push Evolution in HPEC Performance
  • Home
  • Industries
  • Defense and Aviation
  • Defense and Aviation Solutions
  • UGV Requirements Push Evolution in HPEC Performance
English
繁體中文
简体中文
한국어
日本語
  • Login
  • Login
  • home
    • Products
      Computer-On-Module+ GPU Solutions+ Rugged Computing+ Edge Computing Platforms+ Industrial Display Systems & Panel PCs+ Automotive Computing+ Networking & Servers+ Automation & Control+ Design & Manufacturing Services+ Healthcare Computing & Monitors+ Gaming Platforms & Monitors+ Software+
      COM-HPCCOM ExpressOSMSMARCQsevenETX
      MXM GPU ModulesPCIe Graphics Cards
      CompactPCI & CompactPCI SerialVPXPC104AVA Railway Rugged ComputersPIDS
      Industrial PCs, Motherboards, & SBCsEmbedded Computers & IoT GatewaysEdge AI PlatformsAI Smart CamerasRobotic ControllersIndustrial Solid State Drives
      Industrial Touch MonitorsOpen Frame Panel PCsAll-in-One Panel PCsRugged Panel PCsDigital Signage Players
      Autonomous Driving SolutionsAI-ADAS Solution
      AI GPU ServersIndustrial, Telecom ServersNetwork Security AppliancesPrivate 5G Network Solution-MicroRAN
      Machine VisionMotion Control & I/OEtherCAT Motion Control SolutionsHMI Panel PCsData AcquisitionGPIB & DigitizersPXI Platforms & ModulesAutonomous Mobile RobotsIndustrial Gateway Solutions
      DMS+ (ODM/OEM Services)
      Medical Panel PCsMedical MonitorsMedical Box PCs
      Gaming-specific SolutionsGeneric SolutionsGaming MonitorsAdvanced Gaming Architectures
      EdgeGO Device Management Software
      AdvancedTCA Switch BladeAdvancedTCA PlatformAdvancedTCA Processor Blade
      Embedded Flash Storage
      COM-HPC Server Type COM-HPC Client Type
      COM Express Type 6 COM Express Type 7 COM Express Type 10 COM Express Type 2
      MXM 3.1 Type A MXM 3.1 Type B
      Pocket AI (Portable GPU)
      3U VPX Processor Blades 6U VPX Processor Blades VPX Graphics Cards & XMC Modules
      Mini-ITX Motherboards Expandable Fanless Embedded PCs Integrated Fanless Embedded PCs ATX Motherboards Embedded Boards IPC Systems PICMG Single Board Computers Passive Backplanes Industrial Computer Peripherals Industrial Computer Chassis
      Powered By NVIDIA Jetson
      ROS2 Solutions ADLINK ROS2 Github NeuronSDK
      2U Network Appliance 4U Network Appliance
      Frame Grabbers/Video Capture Cards Image Analysis Tool Smart Camera Vision Systems AI Machine Vision Device
      Centralized Motion Controller Distributed Motion Controller Encoder & Trigger Board Motion Software & Utility
      Machine Condition Monitoring Data Acquisition (DAQ) Digitizers
      PXI Chassis PXI Controller PXI/cPCI Modules Remote Controller
      AMR
    • Industries
      Automotive Defense & Aviation Gaming Healthcare Industrial Automation Networking and Communications Retail & Logistics Semiconductor Solutions Smart Cities Test & Measurement Railway Robotics

      Automotive

      automotive computing

      With cutting-edge autonomous driving computing platforms that pave the way for safer and more productive travel, ADLINK's solutions provide you powerful computing capabilities to fulfill autonomous and advanced driver assistance system (ADAS) technologies as well as rugged design for automotive use.

      Learn More

      Defence & Aviation

      Defence & Aviation

      In the defense aviation arena, it is of paramount importance to accurately observe the environment and make fast and reliable decisions, leading to timely action. ADLINK rugged systems and Data Distribution Service (DDS) are a key part of a larger data-focused infrastructure that collects, stores, analyzes, and transfers information from the field to the decision-maker.

      Learn More

      Gaming

      gaming

      ADLINK Gaming provides global gaming machine manufacturers comprehensive solutions through our hardware, software, and display offerings. Uniquely combining computer expertise with a cutting-edge software stack and a deep understanding of the gaming industry’s requirements and regulations, we back up our customers so they can focus on creating the world’s best games.

      Learn More

      Healthcare

      Healthcare

      ADLINK is addressing the needs of healthcare digitization with a focus on medical visualization devices and medically-certificated solutions. By leveraging PENTA's design and manufacturing capabilities in the medical field, ADLINK's healthcare solutions facilitate digital applications in diverse healthcare environments.

      Learn More

      Industrial Automation

      Industrial Automation

      Industrial automation is a crucial facet of global manufacturing industries. ADLINK's flexible selection of system-, platform-, and product-based solutions overcomes the extreme environmental rigors of manufacturing deployments and delivers connected, fault-free performance on the factory floor.

      Learn More

      Networking and Communications

      Overview
      5G & MEC Cyber Security

      Retail & Logistics

      Retail Logistics

      Maintaining superior customer service and on-time delivery while simultaneously reducing retail shrinkage and increasing employee productivity can be very difficult to achieve when shipping high volumes of packages each day. ADLINK's solutions make customers' packages and pallets intelligent, efficiently connecting their entire supply chain and improving warehouse logistics.

      Learn More

      Semiconductor Solution

      Semiconductor Solution

      Everything is essentially driven by chips, and to suit the needs of diverse applications, a perfect wafer manufacturing process is necessary to ensure everything from quality to efficiency and productivity.

      Learn More

      Smart City

      Smart City

      A smart city is an urban area that implements Internet of Things sensors to collect data from a variety of sources and uses the insights gained from that data to manage assets, resources, and services efficiently. ADLINK's data-to-decision solutions incorporate video analytics, reliable design, deliver stability and reliability, and are an ideal choice to realize an efficient smart city.

      Learn More

      Test & Measurement

      Test & Measurement

      Test and measurement focuses on dedicated equipment for analysis, validation, and verification of electronic device measurement and end products. ADLINK continues to expand its T&M offerings with innovative products, meeting the unique needs of high-speed and high-bandwidth applications.

      Learn More

      Railway

      railway solution

      Our Rugged by Design CompactPCI/CompactPCI Serial, computer-on-modules, industrial-grade system and panel computer product portfolio has been specifically selected for onboard ATO/DMI and wayside CTC/RBC/TSRS railway solutions. ADLINK’s exceptional flexibility in design and manufacturing has been utilized by top rail signaling providers worldwide.

      Learn More

      Robotics

      Robotics

      Autonomous Mobile Robots (AMRs) are able to carry out their jobs with zero to minimal oversight by human operators. Facilities such as schools, hospitals, shopping malls, and factories in particular can use a swarm of AMRs to improve operational efficiency and quality of life.

      Learn More

      Featured Solutions

      5G MEC

      Autonomous Vehicle

      GPU Solutions

      ROS 2 Solution

      Smart Manufacturing

    • Strategic Partners
      AMD Ampere Arm Intel MediaTek NVIDIA NXP Qualcomm

      AMD-based Solutions

      AMD-based Solutions by ADLINK

      Empower your edge computing with ADLINK, a leading company enabling edge solutions. Leverage AMD's high performance, secure integration, and power efficiency advantages for a wide range of edge, networking, and edge systems with x86 core architecture. Experience superior processing and graphics performance with ADLINK's utilization of AMD Ryzen™ Embedded series, powered by Radeon™ RX, perfect for industrial, medical, automation and gaming applications.

      Learn More

      Ampere-based Solutions

      Ampere-based Solutions by ADLINK

      Experience the future of edge computing with our comprehensive offering, which includes the Ampere Altra-based COM-HPC module, a developer platform and/or dev kit. Dive in now to unleash superior performance, energy efficiency, and optimized TCO in applications including but not limited to industrial automation, autonomous vehicles, transportation, healthcare, video surveillance, and energy management.

      Learn More

      Arm-based Solutions

      Arm-based Solutions by ADLINK

      Based on Arm architecture, ADLINK also collaborates with Ampere, NXP, MediaTek, Qualcomm, and Rockchip in module computing development and value-added solutions across varied industries, including smart manufacturing, autonomous driving, robotics, AMR, drone, transportation, logistics, retail, infotainment, healthcare, security, and more.

      With plug-and-play tools, development kits, and all-encompassing systems, ADLINK and Arm empower developers to accelerate and realize their innovations.

      Learn More

      Intel-based Solutions

      Intel-based Solutions by ADLINK

      ADLINK is a Titanium member in Intel® Partner Alliance. From modular computing to system-ready use cases, ADLINK works closely with Intel to provide scalable, interoperable solutions that accelerate your intelligent device deployment with end-to-end analytics.

      Utilizing Intel-based modules, ADLINK accelerates your products’ time to market with edge AI platform development support while addressing diverse industry pain points, such as in networking, smart manufacturing, autonomous driving, AMR, transportation, healthcare, retail, and infotainment.

      Learn More

      MediaTek-based Solutions

      MediaTek-based Solutions by ADLINK

      ADLINK Technology and MediaTek are strategic partners that deliver innovative and powerful solutions for edge computing and edge AI applications. Leveraging MediaTek's flagship, power-efficient Genio platform SoCs and ADLINK's expertise in embedded and rugged designs, they provide high-performance, energy-efficient, and reliable modules and platforms in accomplishing various IoT use cases, such as smart home, human-machine interface, multimedia, industrial IoT, and robotics.

      Learn More

      NVIDIA-based Solutions

      NVIDIA-based Solutions by ADLINK

      To fulfill industry-specific requirements, ADLINK is able to efficiently develop edge AI platforms, AI smart cameras, medical platforms, and AI portable GPU accelerators based on NVIDIA Jetson modules, the NVIDIA IGX platform, and RTX Embedded GPUs for applicable industries, including smart manufacturing, autonomous driving, autonomous mobile robots (AMR), robotics, transportation, healthcare, logistics, retail, infotainment, AI development, professional graphics, and gaming.

      Learn More

      NXP-based Solutions

      NXP-based Solutions by ADLINK

      Utilizing NXP's i.MX 8 and i.MX 9 series technology, ADLINK offers edge-connected solutions to assist medical, test & measurement, automation, and smart city customers reduce TCO. This combination of NXP's technology with ADLINK's R&D experience in edge computing provides versatile and dynamic solutions for critical applications.

      Learn More

      Qualcomm-based Solutions

      Qualcomm-based Solutions by ADLINK

      Qualcomm Technologies’ portfolio of leading robotics and drones solutions is driving next-generation use cases, including autonomous deliveries, mission critical use cases, commercial and enterprise drone applications and more.

      Among them, the Qualcomm QRB5165 solution is designed to help build consumer, enterprise or industrial robots with 5G connectivity, on-device AI and machine learning, superior computing, and intelligent sensing capabilities. By adopting Qualcomm QRB5165, ADLINK’s module will enable the proliferation of 5G in robotics and intelligent systems.

      Learn More
    • Support

      Support

      Partner CentereRMA ServicesADLINK DDS Support

      Downloads

      Software & DriversADLINK DDS DownloadsPublicationsContent HubADLINK GitHub

      Contact

      Ask an ExpertWhere to Buy

      No matter you need to get product pricing and availability or need assistance with technical support, we are here for you.

      Learn More
    • About

      Values

      Quality Policy and ResourcesAlliances and ConsortiaADLINK SustainabilityEnviromental Protection & ResponsibilitiesCapabilitesProduct Security

      Company

      About ADLINKWorldwide OfficesInvestor RelationsLogo and Brand GuidelinesCareers

      Newsroom

      News & EventsPodcastBlogsEdgeOpen™ Voices
      Support

      Check out the latest news and explore ADLINK featured blogs.

      Learn More
English
繁體中文
简体中文
한국어
日本語
  • Login

UGV Requirements Push Evolution in HPEC Performance

Mike Jones, Rugged Systems Product Manager
ADLINK Technology Inc.

As modern warfare changes, so must the technical innovations from global defense sector technology partners. The changing face of military engagements, fewer troops on the ground, more use of reconnaissance gathered via autonomous vehicles, real-time feeds to operations and the emergence of network-centric warfare are driving the solutions and applications needed to better support today's warfighter.

 

At their core, today's battlefield engagements depend on access to and the ability to share complex, real-time data with battlefield commanders, who in turn can push select information all the way down to the front-line warfighter. As warfare adjusts to incorporate more types of autonomous vehicles, including those discussed in the Unmanned Ground Systems Roadmap1 developed by the US Army's Robotics Systems Joint Project Office (RS JPO), the need to further reduce SWaP—most-effectively through a standards-based footprint—while also providing High Performance Embedded Computing (HPEC) with flexible sensor I/O, will once again demand a quantum leap in engineering innovation.

 

The support of autonomous ground mobile computing requirements for vehicle operating functions such as vision, communications and autonomous navigation, in parallel with support for payload functions such as custom sensor input or weapons management, will place a high burden on the current crop of rugged HPEC offerings. Will the answer be more custom-fit proprietary solutions, a mix of smaller dedicated processors or the evolution of standards to meet the needs of an autonomous vehicle future? The optimistic answer is that the evolution of technology standards, COTS and engineering innovation will be help usher in the age of vehicle autonomy in all forms of military engagements.

PDF

  • WhitePaper
    UGV Requirements Push Evolution in HPEC Performance

UGV Requirements Push Evolution in HPEC Performance

Real World Robotic Systems JPO Drives the Roadmap

Today's UGVs are either tele-operated by a remote human driver, or run semi-autonomously. At this stage of UGV development, there is a range of capability for autonomous operation. For example, the UGV can either be slaved to another human-operated vehicle in a convoy scenario, or follow a tracking beacon or geographic waypoints using onboard sensors, GPS and computing power to guide progress. HPEC can play a big role in the evolution of autonomous capabilities as they head toward full independence. In addition, the needs of payloads, such as Improvised Explosive Detection (IED) devices, will become ever more sophisticated. Autonomous operation will need situational awareness provided by payload computing as UGVs become fully autonomous.

 

To support progress toward full autonomy, the US Army's RS JPO has developed a functional plan for multiple types of UGVs, including multiple classes of vehicles and unmanned ground vehicle platforms. Specifically, the classes known as self-transportable and appliqué will have the most influence over the HPEC evolution.

 

The RS JPO's Unmanned Ground Systems Roadmap was created with key technology enablers for UGV growth over time. Some of these enablers will have a unique evolutionary/revolutionary HPEC requirement, especially as applied to the sub-segments of autonomous navigation, power, vision, architecture and payload support. To support this roadmap, HPEC solutions will soon require performance upgrades beyond what is available today. Within the UGV self-transportable and appliqué classes there are specific programs with unique capability sets, that require technology enablers in order to adhere to the roadmap. These programs include:

 
  • Project Workhorse: UGV program deploying in Afghanistan that involves a self-transportable utility platform in the form of the Army sponsored Squad Mission Support System (SMSS) from Lockheed Martin. The SMSS is an autonomous ground vehicle that can carry up to a half-ton of squad equipment and can be remotely operated via satellite to perform autonomous operations such as follow-me, go-to-point and retro-traverse. The SMSS sensor suite integrates Light Detection And Ranging (LIDAR), infrared (IR) and a color camera. The vehicle can lock-on and follow any person by identifying his 3D profile captured by the onboard sensors. The SMSS can autonomously navigate through a pre-programmed route using GPS waypoints. Evolution of this class of UGV will require improvements in onboard computer power consumption and more and better sensor integration, while also providing equal or higher computes with a reduced detectable emission signature (See Figure 1).

Figure 1. Lockheed Martin's SMSS, currently deployed in Afghanistan.

  • Convoy Active Safety Technology (CAST): Autonomous Mobility Applique System (AMAS) in the form of an add-on or appliqué retrofit kit to virtually any existing manned vehicle, permitting a wide range of autonomous behavior. Capabilities range from remote operation to driver assist to fully autonomous driving and navigation. The AMAS will be produced using a common open architecture and delivered in multi-kit form: an “A-Kit,” which is the universal brain; a “B-Kit,” which contains the vehicle-specific sensors, aggregation and connectors; and the “C-Kit,” which is oriented toward payload management. With the AMAS, more processing means more autonomous capability; to meet the scale of expected demand, the kits should be delivered in a smaller, standard footprint and take advantage of standardized connections, lowering system costs (See Figure 2).

Figure 2. Examples of how the AMAS kits can be used in a variety of military vehicles to promote varying levels of autonomy.

A common need across programs is the function of autonomous operation and payload support. For the AMAS technology illustrated in Figure 3, autonomous operation is achieved using a combination of multiple sensors, onboard processing, drive-by-wire functionality and additional payload control.

While these programs are currently underway, the Army's RS JPO technology roadmap demands enhanced capabilities for future revisions of these programs that support the following:

 
  • Integration of higher definition IR cameras, more onboard image enhancement for visible spectrum cameras, future integration of both visible and IR data in real time, more camera/sensor inputs that can support higher bandwidth.
  • Algorithm support for object detection and avoidance, intelligent object detection and tracking, stereographic imaging and processing (eventually reaching object identification).
  • HPEC computing support for the above, along with integration of multi-sensor payloads such as IED detection, weapons management, manipulators and sensor cross-cueing.
  • Future common, standards-based architecture for UGV computing (per the RS JPO and its Interoperability Initiative - currently at IOP v.0).
 

For UGVs to achieve improved autonomous operation, the technology roadmap calls for progress in sensor capabilities in terms of input speed, multiple sensor data aggregation, real-time data processing and results dissemination to the controller subsystems. With the sensor requirements and payload-specific support, such as side-looking radar for IED detection, the demand on a single HPEC solution is great. In addition, the push for open standards across the entire scope of product architecture will drive adoption of less proprietary physical hardware, connectivity and software solutions, thus creating the potential for more competitive, interchangeable and evolutionary options.

Imaging and Payload Technology Drives HPEC Requirements in UGVs

 

Computing requirements in UGVs are being driven by imaging used in support of machine vision and the advent of complex payloads for IED detection. There are military UGV programs that need an ability to perform autonomous navigation during the day, as well as the night. They require the ability to navigate in stealth mode (where perception sensor energy is not emitted). Using a pair of Thermal Infrared (TIR) cameras, stereo ranging and terrain classification can be performed to generate an annotated map of the terrain. TIR is a convenient option, since a single TIR camera may already be a part of the sensor suite of many vehicles. A HPEC is provided to analyze the thermal image data and perform the terrain mapping2.

 

For the evolution of autonomous operation relying on TIR offered in UGVs, the image processing that is critical to control functions like autonomous navigation will need to increase as the sensor data streams increase. To achieve useful machine vision, a camera sensor fusion will likely include IR, color CCD and LIDAR capability in a single turret3. Each of these cameras will operate between 15 to 60 fps and can today generate uncompressed 516 Mbits/second of image data per camera, growing to 1.3 Gbits/second and finally 3.48 Gbits/second. Camera data might not be compressed at the source, so as not to degrade the level of image processing that can be rendered by the HPEC interfaced using the RS-170 or RS-422 video signal standard. As data rates increase, CameraLink, GigEVision or CoaXpress will replace the above interfaces.

 

The RS JPO roadmap calls for new obstacle and collision avoidance algorithms, which rely heavily on recursive calculations best done on GP-GPUs or specialized FPGAs. For example, recent research done for UAV image processing using GP-GPU based algorithms4 has shown a 99.5% increase in performance over running the same algorithm on an Intel CPU. In all cases, the GP-GPU rendered the results in under 50 msec4. Given a fully autonomous vehicle scenario where a human operator is not involved, and vehicle operation decisions must be made in real-time at speed; having an HPEC equipped with GP-GPU capability that can correlate all the inputs and successfully execute the mission is imperative. Hence the use of multiple types of higher definition cameras running at a higher resolution; higher bandwidth will drive the design of rugged HPEC computing that supports future UGVs.

 

A complete anti-IED payload system requires an IED-detection component, an IED-assessment component and an IED-defeat component. The payload processing must be accomplished in real-time to achieve the desired level of safety for the UGV and its mission. As with autonomous navigation and machine vision, the real-time detection of the changes in the data coming from the detector components will require a large amount of either GP-GPU or FPGA processing.

 

Today, a divide and conquer approach is used to separate vehicle control, sensors and payload processing. Separating functions into kits as described with AMAS technology (See Figure 4) is a good approach to the future growth of HPEC in UGVs. For example, a fully autonomous vehicle with a payload of ground penetrating radar could not execute all of its processing tasks with a single HPEC solution. By sub-dividing the problem into compute and function nodes, a scalable long-term solution emerges. Having standards for the UGV solutions that regularize the HPEC physical box size, supported I/O and connector types will enable interchangeability and evolution as HPEC solutions grow and change.

Evolution of Technology Standards, COTS and Engineering Innovation

 

Evolving UGV requirements need raw processing speed and execute algorithms that are highly recursive, creating the need to have HPEC solutions that combine generic COTS Intel CPU processing and a closely coupled GP-GPU into a single solution.

 

As mentioned, the RS JPO is promoting the use of standards in the fielding of UGV solutions, current market 3U & 6U VPX provide rugged HPEC solutions. Emerging standards in smaller footprint HPEC solutions include the VITA Technologies standard known as VITA 75. VITA 75 takes a fundamentally different approach from other small form factor standards, in that it concentrates on the physical box, a set of standard enclosures dimensions, connectors and I/O pin assignments, rather than on specifying the individual computer modules inside.

 

VITA 75 subsystem profiles are composed of up to four separate sub-profiles:

 
  • VITA 75.0 component of subsystem profile (base profile)
  • VITA 75.11 component of subsystem profile (front panel profile)
  • VITA 75.2x cooling and mounting, consisting of a VITA 75.2x dot specification followed by profile nomenclature specified by VITA 75.2x
 

VITA 75 solutions are especially well-suited to address UGV HPEC requirements, as they provide designers with a set of standardized footprints that are generally smaller than equivalently equipped OpenVPX 3U or 6U solutions, while also offering a standardized connector scheme that allows for sub-system interchangeability at the vehicle-level and provides for evolution of the vehicles sub-system in a predictable fashion. ADLINK's HPERC (High Performance Extreme Rugged Computer) system is typical of this type of VITA 75 solution (See Figure 5). HPERC provides a solid foundation of Intel i7 processing closely coupled to either an embedded NVIDIA or ATI GP-GPU, as well as a wealth of camera and vehicle data bus and I/O support. This solution can readily provide the necessary image processing and I/O required for UGV applications both today and in the future.

Link

Figure 5: The ADLINK HPERC is a sealed, rugged COTS computing platform incorporating industry standard technology and long-life processing architecture.

Summary

 

UGVs represent a force multiplier for ground forces. The challenges of true autonomous operation and adequate payload support represent a clear direction for HPEC. If the aggressive roadmap for UGVs is to be realized, a common, standards-based HPEC architecture must emerge and evolve. ADLINK, along with fellow embedded platform vendors, is working to define and develop against industry standards in order to meet the SWaP requirements for HPEC systems of the future in order to meet the demanding requirements of UGV and other programs that benefit the warfighter.

 

Citations:

 
  1. Robotic Systems – Joint Project Roadmap - 2011 and addendum 2012. Unmanned ground systems discussed include CAST/AMAS, Packbot 500 Fastac, SUGV XM-1216 w/Tether, SUGV 310 (Mini-EOD), TALON III B, TALONG IV, and Packbot 510.
  2. A. Rankin - Unmanned ground vehicle perception using thermal infrared cameras - 2011
  3. G. Kogut - Sensor Fusion for Intelligent Behavior on Small Unmanned Ground Vehicles 2007
  4. B. I. Sheta - Vision based Navigation (VBN) of Unmanned Aerial Vehicles (UAV) - 2012
COTS Conduction Cooled CompactPCI for Military Applications List VITA 75 vs. VPX: Optimizing unmanned vehicle thermal and payload efficiencies
About ADLINK
Mission & Vision
ADLINK Sustainability
Investor Relations
News & Events
Careers
Contact Us
Ask an Expert
Worldwide Offices
Where to Buy
Support
Partner Center
eRMA Service
ADLINK DDS Support
  • Stay Connected
  •                
Subscribe ADLINK Newsletter
Privacy Policy
Cookie Policy
Site Map
About UsWorldwide OfficesSupport
  •    
  •    
  •    
  •    
Copyright © 2025 ADLINK Technology Inc. All Rights Reserved.
Email:service@adlinktech.com